-4.9t^2+38.5t+5.6=0

Simple and best practice solution for -4.9t^2+38.5t+5.6=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4.9t^2+38.5t+5.6=0 equation:


Simplifying
-4.9t2 + 38.5t + 5.6 = 0

Reorder the terms:
5.6 + 38.5t + -4.9t2 = 0

Solving
5.6 + 38.5t + -4.9t2 = 0

Solving for variable 't'.

Begin completing the square.  Divide all terms by
-4.9 the coefficient of the squared term: 

Divide each side by '-4.9'.
-1.142857143 + -7.857142857t + t2 = 0

Move the constant term to the right:

Add '1.142857143' to each side of the equation.
-1.142857143 + -7.857142857t + 1.142857143 + t2 = 0 + 1.142857143

Reorder the terms:
-1.142857143 + 1.142857143 + -7.857142857t + t2 = 0 + 1.142857143

Combine like terms: -1.142857143 + 1.142857143 = 0.000000000
0.000000000 + -7.857142857t + t2 = 0 + 1.142857143
-7.857142857t + t2 = 0 + 1.142857143

Combine like terms: 0 + 1.142857143 = 1.142857143
-7.857142857t + t2 = 1.142857143

The t term is -7.857142857t.  Take half its coefficient (-3.928571429).
Square it (15.43367347) and add it to both sides.

Add '15.43367347' to each side of the equation.
-7.857142857t + 15.43367347 + t2 = 1.142857143 + 15.43367347

Reorder the terms:
15.43367347 + -7.857142857t + t2 = 1.142857143 + 15.43367347

Combine like terms: 1.142857143 + 15.43367347 = 16.576530613
15.43367347 + -7.857142857t + t2 = 16.576530613

Factor a perfect square on the left side:
(t + -3.928571429)(t + -3.928571429) = 16.576530613

Calculate the square root of the right side: 4.071428572

Break this problem into two subproblems by setting 
(t + -3.928571429) equal to 4.071428572 and -4.071428572.

Subproblem 1

t + -3.928571429 = 4.071428572 Simplifying t + -3.928571429 = 4.071428572 Reorder the terms: -3.928571429 + t = 4.071428572 Solving -3.928571429 + t = 4.071428572 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '3.928571429' to each side of the equation. -3.928571429 + 3.928571429 + t = 4.071428572 + 3.928571429 Combine like terms: -3.928571429 + 3.928571429 = 0.000000000 0.000000000 + t = 4.071428572 + 3.928571429 t = 4.071428572 + 3.928571429 Combine like terms: 4.071428572 + 3.928571429 = 8.000000001 t = 8.000000001 Simplifying t = 8.000000001

Subproblem 2

t + -3.928571429 = -4.071428572 Simplifying t + -3.928571429 = -4.071428572 Reorder the terms: -3.928571429 + t = -4.071428572 Solving -3.928571429 + t = -4.071428572 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '3.928571429' to each side of the equation. -3.928571429 + 3.928571429 + t = -4.071428572 + 3.928571429 Combine like terms: -3.928571429 + 3.928571429 = 0.000000000 0.000000000 + t = -4.071428572 + 3.928571429 t = -4.071428572 + 3.928571429 Combine like terms: -4.071428572 + 3.928571429 = -0.142857143 t = -0.142857143 Simplifying t = -0.142857143

Solution

The solution to the problem is based on the solutions from the subproblems. t = {8.000000001, -0.142857143}

See similar equations:

| 19=y+9 | | 3(2(5)-1)-(7-4(5))=40 | | 5x+3+7x=15 | | 4x+3x+5y= | | (3x+2)+3x-4=44 | | 3x+4x-4=-25 | | -4.9t^2+3805t+5.6=0 | | 2a-21.7=a+13 | | -10=.5x^2+8 | | 6n+22=-50 | | (3n^2+2n-1)+(2n^2+n+9)= | | y-9=3(x+3) | | 2.5x=5x+-3 | | -5(8m-10)=6-4(9m-9) | | x+217=290 | | -32=-4(-y+3) | | 5h+22=79 | | 33-7x=11+4x | | 8x+8=11x+4+3x+4 | | 12x=11x+7 | | 3(x+1)=3x+2 | | -6(6+11x)=-6(1+11x) | | d+f=g | | -72+x=15 | | 2f+3=45+2a | | 4/3=9/v | | 0.5(6x-4)=4x-99 | | 7b-13=3(3+6b) | | 5(3n+2)=6(6n+5)+6 | | (x-3)(2x+5)=6 | | -16=5b+3b | | x-3.7=5.9 |

Equations solver categories